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Fundamental-measure density functional theory study of the crystal-melt interface of the hard
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Two versions of the fundamental measure density functionals together with a new interfacial density profile
parametrization were used to study the hard-sphere crystal-melt interface in the framework of the fundamental
measure density functional theory. The equilibrium interfacial density profiles and interfacial free energies
were found as a result of minimization of grand canonical potential of system with respect to parameters of
density profile. We found that the average interfacial free energy is about 0.78, which is in reasonable agree-

ment with simulation results.
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I. INTRODUCTION

Investigations of the interfaces between a crystal and its
melt play an important role for the better understanding of
the processes of crystal growth and melting. One of the key
quantities of the crystal-melt interface is the interfacial free
energy. Experimentally, this quantity can be extracted from
nucleation data [1] or from experimentally measured Wulff
shape of the crystal-melt system [2]. The former is based
upon the classical nucleation theory and only the overall av-
erage of interfacial free energy can be obtained. The latter
can yield anisotropy of the interfacial free energies, but so
far only a few systems have been studied [3]. Thus efficient
and accurate theoretical-computational methods will be valu-
able alternatives to provide reliable information on the
crystal-melt interfaces.

The computational methods to study the thermodynamics
and structures of the interface which accounts for the micro-
scopic structure are molecular simulations, either Monte
Carlo (MC) or molecular dynamics (MD) simulations. There
are two main strategies to extract the interfacial free energies
from molecular simulations. The first one is the cleaving
potential method, which is based on the basic thermody-
namic statement that the interfacial free energy is equal to
the reversible work to create that interface [4—6]. The second
one is the capillary wave method, which is based on the
measurements of interfacial fluctuations, which is related to
the interfacial stiffness that in turn yields the interfacial free
energy [7-10]. These methods have been applied to various
model systems, but the computational cost is still quite de-
manding. For the hard sphere system, it was found that the
anisotropy in the interfacial free energies related to the dif-
ferent crystal surface orientations is weak and the average
value is ~0.6 [5,10].

For the past two decades a number of density functional
theories were developed for the investigation of the proper-
ties of the hard sphere system including the interfaces. From
these theories, phase diagram, the equilibrium density profile
of the interface, and the interfacial free energies have been
obtained (see Ref. [11]). Furthermore, the thermodynamic
properties of systems with soft interaction can be computed
with the help of the hard sphere system together with the
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appropriate perturbative theories (see, for example, Refs.
[12,13]).

For the density functional theory (DFT) study of interfa-
cial properties the choice of interfacial density parametriza-
tion is crucial in addition to the choice of various versions of
density functionals. The commonly used interfacial density
parametrization is the two-parameter one proposed by Curtin
[14] (which is based on a earlier form by Haymet et al. [15]).
As it turns out the Curtin parametrization could become un-
physical in some parameter region (see Sec. IT). Another pa-
rametrization which includes more than 10° independent pa-
rameters was proposed [16], but the minimization for the
interface free energy of such a large parameter space is com-
putational very demanding.

As for the density functionals used, all the studies are
based on earlier versions of DFT involving either the trun-
cated expansion of the free energy [15,17,18] or more elabo-
rated nonperturbation types of DFT such as weighted density
approximation (WDA), modified weighted density approxi-
mation (MWDA), generalized effective liquid approximation
(GELA) and their modifications [14,16,19-22]. The results
of these works are not consistent with each other where the
interfacial free energy falls in the range of 0.25-4.0 (see
brief review Ref. [23] and Table II).

Based on some geometrical properties of the hard sphere
system, a fundamentally different form of density functional,
called fundamental measure (FM) DFT, was proposed [24].
With some modifications this functional is very successful to
describe the different properties of hard sphere (HS) liquid,
solid phases and their coexistence (for the recent review see
Ref. [25]), although up to now the HS solid/liquid interface
properties have not been explored yet.

The present work was undertaken to study the interfacial
properties of the hard sphere system using the fundamental
density functional. We have proposed a more physical pa-
rametrization of the interfacial density profile to overcome
the drawbacks of previous methods. The resulting interfacial
free energy is reasonably in agreement with simulation re-
sults.

The article is organized as the following. In Sec. II the
fundamental measure DFT is briefly presented to make the
paper self-contained. In Sec. III the coexistence properties of
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the bulk solid and liquid phases are calculated to pave the
way for our presentation of interfacial free energy calcula-
tions. In Sec. IV the parametrization of the interfacial density
profile are described. The results for the equilibrium density
profiles and the interfacial free energies at various crystal
orientations are obtained in Sec. IV.

II. FUNDAMENTAL MEASURE DENSITY FUNCTIONAL
THEORY

In the framework of DFT the free energy Fyg of a HS
system can be written as a functional of number density pro-
file p(7). It consists of two parts: the ideal gas contribution
F,dlp] and the excess free energy F.[p] over the ideal-gas
part

Fuslp(r)] = Figlp(r)]+ Fex[p()], (1)

where

Filp()]=kgT J drp(M{In[p(HA*] -1}, (2)

and kjp is the Boltzmann constant, T temperature, and A de
Broglie wavelength.

From the above functional the corresponding grand ca-
nonical potential functional () may also be constructed

Q[P = Fuasl (D] - f dup() + f APV Pl
&)

where u is the chemical potential of the system and Vi (r)
the potential of the external field acting on the system. The
variational principle

mHS[P(F)]
Sp(r)

yields the equation for the equilibrium density profile in an
external potential.

In the framework of Rosenfeld Fundamental Measure
DFT the excess part of the free energy F., is expressed as a
volume integration on the Rosenfeld functional & [24-28]

=0 4)

w.T

BFex = f drd{n,(r)}. )

The scalar n,, ns, vector ﬁvz, and tensor 77 weighted densities
in this expression are given by the integral convolutions of
the number density p(7) with corresponding weight functions

nol(P) = f dr' p(r ) wa(F=r'). (6)

The weight functions w, in these expression were defined as

() = 5(§—y), @ (7) =(§—y), ™
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‘:’uz(f)=5y5<g—)’)’ C?’jk(f)=€j5k5(g—)’>~ (8)

Here ¢, is a unit vector along the y direction and o is the
diameter of the hard sphere, &(r) the Dirac delta-function,
O(r) the Heaviside step function, cﬁvz and @;, are the vector
and tensor weight functions, respectively.

Among different approximations for the Rosenfeld func-
tional ®, we chose the two which successfully describe the
liquid, solid phases, and their coexistence. The first version
[26] (denoted as V2PY version) is independent of the tensor
weighted densities

2 2

n n,—n,
OV = 2 10—y 4 ————2—
o ( ) 27o(1 —ns)

(m=ny)*

247m§ (1-ny)?

9)

and in the homogeneous density limit reduces to the Percus-
Yevick (PY) free energy expression. Another version (T2CS)
[27,28] is also a functional of tensor densities

2 2
n ny—n, 1 n
P26 = - —2-In(1 - ny) + 2+ ( :
wo’ ( s) 2mo(1-n3)  8mni\(1-n3)?

+ ln(l - n3)>{ﬁvzﬁﬁvz - nzﬁlzjz - tr(ﬁ3) + nztr(ﬁz)},
(10)

which in the homogeneous density limit gives the Carnahan-
Starling (CS) free energy. It is known that the CS expression
is more accurate to describe the HS liquid free energy as
compared to the Percus-Yevick one, whereas the PY-based
FM DFT functionals are more accurate to describe the HS
solid properties (see discussion in Ref. [28]).

II1. HS SOLID AND LIQUID PHASES COEXISTENCE

To study the interfacial properties, we first need to outline
the coexistence conditions under the functionals used. Below
we briefly describe the necessary ingredients for the calcula-
tion of the coexistence conditions using the functionals given
by Egs. (9) and (10) (more details of the calculations are
available in Refs. [13,26-28]).

The fec solid phase lattice parameter is a=(4/p)">, where
p is the number density in the bulk solid [p:%, I VpS(F)dV].
The density profile p,(7) in the bulk solid can be accurately
parametrized by a sum of Gaussian density distributions

)1/3

around the solid lattice sites {13}
- 2 o 302 F_R)?
ps(F)=2pA(r—R,-)= . Ee‘“(" (1)

where « is the width of the Gaussian distribution. The
weighted densities can be written as a sum of the correspond-
ing contributions from different lattice sites
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TABLE I. HS fcc solid-liquid coexisting parameters; p; and p;
are the liquid and solid densities, L=(3/@)"?/a the Lindemann ra-
tio, P pressure at coexistence. Results of MC simulation are taken
from Ref. [29].
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TABLE II. The density functional theory results for the hard-
sphere solid-liquid interfacial free energy with the interfacial den-
sity profile parametrized by Eqgs. (14)—(17).

Authors Year  Method o2 kyT
pi Ps L P .
Curtin [14] 1989  WDA 0.63-66
T2CS 0.934 1.023 0.133 11.29 Marr, Gast [20] 1993 PWDA 0.60
V2PY 0.937 1.020 0.113 12.26 Kyrlidis, Brown [21] 1995 PGELA  0.25-0.37
MC 0.943 1.041 0.129 1.7 Choudhury, Ghosh [22] 1998 MWDA 0.33
GEMTG I} (12) L I <20,
1
folz) = %[1 +cos<71'(zA ZO))], 20 <lz] <zg, (15)
All the weighted densities n(A“)(f) can be found in analytical ‘G
forms [13,30]. For a given bulk density p the value of free 0, 26 <lel,
energy Fla;p] can be calculated as a function of the Gauss- ,
ian parameter . The minimum of F| «; p| with respect to « G,
givelz the equilibrium value of free eglergpj Flp] ané) equilib- Azg=le =2l = (E) Az (Azp=42), (16)
rium value of parameter . The dependence of the FM DFT
solid free energy on the bulk density p was found to be in a 0<v<1, G=G,. (17)

good agreement with the result of MC simulations. The
knowledge of the functional dependence of free energy F' on
the bulk density p in the solid and liquid phases allows to
compute the coexisting conditions between the solid and the
liquid phases. The results are given in Table I. It is shown
that both versions of FM free energy functional agree well
with simulation results, except that T2CS version provides
slightly better Lindemann ratio (together with the Gaussian
parameter «) at coexistence.

IV. HARD SPHERE CRYSTAL/MELT INTERFACE

Now let us consider the interface between the coexisting
HS bulk solid and liquid. In the interfacial region the prop-
erties of bulk solid are smoothly transformed to the proper-
ties of the bulk liquid. The interfacial free energy is defined
as

y= Q(ILL’ T) - Qbulk(lu“’ T) - Q + PV

A A 7 (13)
where () is the grand canonical potential in the system with
the interface, Qpyc=Qgo11a=Qiiguia 18 the grand canonical po-
tential of the equilibrium solid and liquid phases (in the bulk
Q=-PV, P is the coexistence pressure, V the volume of the
system), A the area of the interface. To calculate the interfa-
cial grand canonical potential {) an appropriate interfacial
density parametrization is needed.

In the literature, a widely used method to parameterize the
density profile of the interface is [14]

p(D) = pr+ (o= P2 + 2 pefe(e®,  (14)

G#0

where

Here z is the coordinate in the perpendicular direction to

the interface, G is a reciprocal lattice vector, G its magni-
tude, G, the magnitude of the smallest nonzero reciprocal
lattice vector. The parameter Az is the width of the interface
and the parameter v controls the rate of broadening of the
solid density peaks. The interface is located in the region
[20320+Az]; for z<z, the density profile reduces to the den-
sity profile in the bulk solid p,(7)= pS+EG¢OpGe"G'; written
with reciprocal lattice vectors; for z>z,=z(+Az it gives the
homogeneous density in the bulk liquid p;. To calculate the
interfacial free energy some authors used this parametriza-
tion together with the different types of DFT. Table II sum-
marizes these results. It is seen that the results for the inter-
facial free energy differ from each other for various types of
DFT used.

We also started with this interfacial density profile param-
etrization together with the fundamental measure DFT. All
the corresponding weighted densities in the interface n,, ns,
ﬁvz, and 7 were computed analytically (except for the regions
[z0—0/2;z20+0/2] and [z,—0/2;z,+0/2] where the
weighted densities were reduced to the one dimensional in-
tegrals). For various v and Az we did not find the global
minimum for the interfacial free energy . For example, for
every given Az with increasing v from v=0 to v=1 the vy just
gradually decreases even to some negative value for big v.

There is also another problem with the density parametri-
zation of Eqgs. (14)—(17). It is known that an important con-
dition for the HS system is the non-overlapping of hard
spheres [16,31-33]. In the integral form this condition can be
written as

fd%’@(%-ﬁ- f'|)p(f') <1, (18)

which gives restrictions on the values of the weighted den-
sity n5 [Eqgs. (6) and (7)]
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nsy(r) < 1. (19)

For previous DFT approximations (such as WDA, MWDA,
GELA) the condition of Eq. (18) is not intrinsic to the func-
tional, although an attempt to adopt constrained MWDA that
satisfies this condition was undertaken [31]. In the frame-
work of the fundamental measure DFT, which is based on
some geometrical properties of hard spheres [34], the condi-
tion of the nonoverlapping of hard spheres is automatically
accounted for by the special form of the free energy func-
tional ®, where the condition n;=1 leads to divergent func-
tional @ in Egs. (9) and (10). We have observed that for
some small values of Az and big values of v at some points
of the interface the local packing fraction n; is larger than 1,
which indicates the unphysical nature of this density profile
parametrization. This unphysical behavior can also been seen
from the following argument. For v=0 the density profile
can be shown to be

p(r) = pl1 = fo(2)] + fo(2) py(7). (20)

It can be easily seen that the density profile is a mixing of a
bulk liquid density p; and a solid density profile p,(r), which
under certain conditions will leads to overlapping hard
spheres, i.e., n;=1.

To avoid the abovementioned difficulties with the param-
etrization Egs. (14)—(17) we introduced a new parametriza-
tion of the density profile. The main feature of this param-
etrization is that the fcc lattice structure now is spread all
over the system and the density profile of the whole system
may be written in a similar way to the one in the bulk solid,
but with different widths

(IE) 3/2

a .

(D=2 (—) e RN, (21)
IS a

now the Gaussian parameter « depends on the site position

R. Let the interface be in perpendicular to the z direction. For

17

psm(2) = p1+ (ps— py) %[ 1- tanh(

O’

In the bulk fcc crystal lattice the distance d between layers
along different crystal orientations are d;p=a/2 V2, dioo
=al2, dyjy=al\3 (dy10<dy00<d,;;). In this lattice (110) is
more densely packed, but the most densely packed plane is
(111). Extending this to the whole system (bulk solid
+interfacial region+bulk liquid) we can write the interlayer
spacing d; along the normal direction to the interface (along
the z axis) as
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the lattice sites at the bulk solid (z<z,) the Gaussian param-

eter a=a(R) equals to a;, the equilibrium Gaussian width of
the coexistence solid phase. For the ones in the bulk liquid
(z>7z9+Az) the parameter « should be small enough to pro-
vide the sum of the widely overlapping Gaussians to be
equal to the uniform density distribution (we chose a;=1).
For the interfacial region between the bulk solid and liquid
(zo<z<zg+Az) there are N layers of lattice sites whose
equilibrium values of the Gaussian parameters {a,-}?il can be
found by minimizing the interfacial free energy. The Gauss-
ian parameters a;within the same layer are the same and the
parameters change from layer to layer in the interfacial re-
gion with the obvious restriction a,=Za;=a,=-=ay

= a;. Thus, the values of «; and a(ls) are related by

Ay, Rz,i <2
C((R): a;, ZO<RZ,,’<Z()+AZ,
a=1, R_,;<zo+Az,

where R_; is projection of the lattice vector of the i shell on
the z axis.

In addition, the fcc solid lattice spacing a; in the plane of
the interface (i.e., along the x and y axis) is fixed to be

ax,i = ay,i =da;= (4/ps) 173 s (22)

whereas in the perpendicular direction to the interface (along
the z-axis direction) it increases from a,=(4/p,)' at z <z, to
a;=4/(pja?) at z>zy+Az. Such choice of a, provides the
value of the homogeneous density at z>z,+Az to be equal
to the coexisting liquid density p;. The lattice parameter in
the transition area is chosen to be equal to

a.(R) = /[ p,(R)a?], (23)

where p,,(z) is some smoothed density profile in the inter-
face region which may be parametrized by an expression
with hyperbolic tangent (other reasonable function forms
give the same results)

|Z|$ZO’
6(z—zo—Az/2
%)] 20 < 2| < zo + Az. (24)
4
Z0+AZ<Z.
[
a, ; a, ; a., ;
d(.loo):ﬁ’ d(<”0)= z,t’d('lll)zﬁ. (25)
i 2 i 22 i \’/g

For a given crystal direction the distance between layers,
AR, ;=d;, increases with the increasing z from the bulk solid
(z<zp) to bulk liquid (z>z¢+Az). The width of the transi-
tion region Az is
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TABLE III. The results for the HS solid-liquid surface tension
(in the units of kzT/0?) for the different crystal interface orienta-
tions obtained by MD (Davidchak and Laird [5]), MC (Mu, Houk
and Song [10]) simulations, WDA DFT (Ohnesorge, Lowen, Wag-
ner [16]) and also the results of the present work with T2CS and
V2PY versions of FM free energy density functional.

MD MC DFT T2CS V2PY

Yo 0.6220.01
yio  0.640.01
Yin 0.58+0.01
y 0.61+0.01

0.64+0.02 0.35 0.79 0.68
0.62+0.02 0.30 0.89 0.84
0.61+0.02 0.26 0.87 0.82
0.62+0.02 0.30 0.85 0.78

Az= E d;. (26)

Finally, to find the values of lattice parameter a,; in the
transition region a set of Egs. (23)—(26) are solved by the
iterations.

With the above interfacial density parametrization, all
weighted densities can be written conveniently a sums of the
contributions from different lattice sites. Moreover every
contribution can be given by an analytical expression.

To find the grand canonical potential { [Eq. (3)] incorpo-
rated into the expression for the interfacial free energy 7y [Eq.
(13)] the three-dimensional volume integral can be calcu-
lated numerically. To reduce the volume of integration a sim-
plex of the integration volume can be found by taking into
account the symmetry of the system. This simplex is chosen
to be a prism with its rib along the z direction and its base
being a triangle in the x-y plane. The equation of this triangle
is for (100) orientation Ofx\%, y<x and %Sx$%, y

a
E?

ay

<-* and OSys%, A=—Z, for (111) orientation: 0<x

<a§—x, and its area A= for (110) orientation: 0<x

22 4
dg X X Ay
== —_—m=sy=s = ===
25 and —F<y<3F, A=g3.

Now for a given crystal orientation, the number of varia-
tional parameters N and every set of Gaussian parameters in
transition region {a;}Y,, ¥(a, ..., ay) can be calculated nu-
merically. To minimize y with respect to {«;}s we used the
numerical downhill simplex method in multidimensions [35].

We performed the minimization of functional y with dif-
ferent numbers of layers N=2. It was found that with the
increasing of the number N the equilibrium y decreases until
it reaches a limiting value for N=17. The obtained results of
the interfacial free energy for T2CS and V2PY versions of
FM free energy functional are compared in Table III with the
results of MD [5] and MC [10] simulations and also DFT of
Ref. [16]. Reference [16] used the WDA functional but with
the interfacial density profile parametrized by almost 1 mil-
lion independent parameters and at the same time, the con-
dition Eq. (18) was taken into account. It can be seen that the
average interfacial energy vy obtained in Ref. [16] is two
times smaller than the one obtained from simulations,
whereas the vy obtained at the present study overestimates by
37% (T2CS version) or 26% (V2PY version).
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FIG. 1. The interfacial density profile p(z) as a function of
z/dyqp for the (100) direction. As a small change in the initial part
of the interfacial density profile will be accumulated over the whole
profile, thus a direct comparison with simulation results is not illu-
minating. We did compare the overall features of our density profile
with simulations [37] and they are consistent with each other for the
three directions computed here.

It should be noted that vy;y, overestimates the simulation
results by only 10% (V2PY version). The reason that the
V2PY version of FM DFT provides better agreement with
the simulation results than the T2CS version may be ex-
plained as the following. From the discussion in Ref. [28] it
may be concluded that the versions of FM DFT based on the
PY approximation provides a better description of the HS
crystal, whereas the ones based on CS approximation are
more accurate for the HS fluid. In our model solid/liquid
interfacial system, all the system is considered to be the sol-
idlike, with the atoms located at the sites of model solid
lattice. The density profile in such solidlike system has the
form of a sum of Gaussian distributions around these solid
lattice sites, with the Gaussian parameter « decreases and
lattice parameter a increases toward the bulk liquid side. It
seems that according to the discussions in Ref. [28] a PY
version will be indeed a better choice than the CS one for
such system. In Ref. [28] the tensor version of Rosenfeld
functional T2PY is provided, which gives rather crude coex-
isting densities p;=0.985 and p;=0.892. So it seems that the
vector version V2PY of Ref. [24] provides the best choice
for the calculation of the interfacial free energy in the frame-
work of the present solidlike model.

The result for the equilibrium interfacial planar averaged
density profile p(z =iffdxdyp(7) are shown in Fig. 1 for
the 100 crystal orientation. The obtained width of interface
may be estimated as approximately 7—9 interfacial layers for
all the orientations, which is in line with the results of MC
[21], MD simulations [36,37], although the WDA DFT [16]
provides slightly narrower interface. The other crystal orien-
tations gives similar agreements between our calculation and
the simulations.

V. CONCLUSIONS

We applied the fundamental measure density functional
theory to study the interface between coexisting hard sphere
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liquid and its fcc solid. The minimization of the interfacial
free energy using earlier interfacial parametrization of the
density profile [14] was found to give nonphysical configu-
rations of the interfacial density.

As a result a more physical parametrization of the density
profile was introduced and the minimization of the interfacial
free energy provides good equilibrium density profile in the
interfacial region. The resulting interfacial free energy has an
average value of y=0.78 (V2PY version). The interfacial
free energies along different crystal directions are also calcu-
lated. We found 26% difference between the interfacial free
energy obtained in the present study and the one obtained by
the MC and MD simulations [5,10]; it seems that the aniso-
tropy could not be resolved reliably from the current density
function formulation.

The fact that the obtained values for the interfacial free
energy vy overestimate the simulation ones means that there
is enough “room” to continue the minimization. Indeed it
seems that for more flexible parametrization or for larger
number of the minimization parameters the minimization of
the grand canonical functional may decrease the result for y
further. The increasing the number of minimization param-
eters may be achieved with introducing the tensor values of
parameter {a}s in the interface rather the scalar ones. An-
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other possibility is to utilize as the minimization parameters
the values of the interlayer interfacial distances {a_}s rather
than using the parametrization (23) and (24). However, it
should be noted here that the increasing of the numbers of
minimization parameters makes the numerical computation
more extensive.

Applications of the present strategy to various model sys-
tems where simulation results are known [9,38] should be
interesting. From such calculations we may have a better
error estimate of the density functional approach to interfa-
cial free energies. The power of the present approach may lie
in the applications to the interfaces of multicomponent sys-
tems, where computer simulations are much more computa-
tional intensive.
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